منابع مشابه
Menger curvature and rectifiability
E3 c(x, y, z)dH(x)dH(y)dH(z) where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to ...
متن کاملMenger Curvature and Rectifiability 833
where H1 is the 1-dimensional Hausdorff measure in Rn, c(x, y, z) is the inverse of the radius of the circumcircle of the triangle (x, y, z), that is, following the terminology of [6], the Menger curvature of the triple (x, y, z). A Borel set E ⊂ Rn is said to be “purely unrectifiable” if for any Lipschitz function γ : R → Rn, H1(E ∩ γ(R)) = 0 whereas it is said to be rectifiable if there exist...
متن کاملRegularizing and self-avoidance effects of integral Menger curvature
We investigate geometric curvature energies on closed curves involving integral versions of the Menger curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the context of harmonic analysis. Mathematics Subject Classification (2010): 28A75 (primary); 53A04,...
متن کاملHigh-Dimensional Menger-Type Curvatures - Part I: Geometric Multipoles and Multiscale Inequalities
We define discrete Menger-type curvature of d+2 points in a real separable Hilbert space H by an appropriate scaling of the squared volume of the corresponding (d+1)-simplex. We then form a continuous curvature of an Ahlfors regular measure μ on H by integrating the discrete curvature according to products of μ (or its restriction to balls). The essence of this work, which continues in a subseq...
متن کاملFinite Curvature of Arc Length Measure Implies Rectifiability: a New Proof
If E ⊂ C is a set with finite length and finite curvature, then E is rectifiable. This fact, proved by David and Léger in 1999, is one of the basic ingredients for the proof of Vitushkin’s conjecture. In this paper we give another different proof of this result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematics
سال: 1999
ISSN: 0003-486X
DOI: 10.2307/121074